
U.S. DEPARTMENT OF THE INTERIOR 
 

U.S GEOLOGICAL SURVEY 
 
 
 

Soil Moisture Tendencies into the Next Century for the 
Conterminous United States 

 
 

by 
 
 
 

Konstantine P. Georgakakos1,2 and Diane E. Smith1 

 
 
 
 
 
 
 
 
 

Open-File Report 00-335 
 
 
 
 
 

Any use of trade, product, or firm names mentioned in this report is for descriptive pourposes 
only and does not imply endorsement by the U.S. Government.  This report is the basis for an 
article submitted for publication to the Journal of Geophysical Research - Atmosphere, that is 
currently under review. 
 
1 Hydrologic Research Center, 12780 High Bluff Drive, Suite 250, San Diego, CA 92130, USA 
2 Scripps Institution of Oceanography, UCSD, CA 92093-0224, USA 

 
August 2000



 1

Soil Moisture Tendencies into the Next Century for the Conterminous  
United States 

 
Konstantine P. Georgakakos1,2 and Diane E. Smith1 

 

ABSTRACT 

 A monthly snow-pack and soil-moisture accounting model is formulated for application 
to each of the climate divisions of the conterminous United States for use in climate impacts-
assessment studies.  Statistical downscaling and bias-adjustment components complement the 
model for the assimilation of large-scale global climate model data. Simulations of the 
formulated model driven by precipitation and temperature for the period 1931-1998 produce 
streamflows that are broadly consistent with observed data from several drainage basins in the 
US.  Simulated historical soil moisture fields reproduce several features of the available observed 
soil moisture in the Midwest. The simulations produce large-scale coherent seasonal patterns of 
soil moisture field-moments over the conterminous US, with high soil moisture means over 
divisions in the Ohio Valley, the northeastern US and the Pacific Northwest, and with 
pronounced low means in most of the western US climate divisions.  Characteristically low field-
standard-deviations are produced for the Ohio Valley and northeastern US, and the Pacific 
Northwest in winter, and the southwestern US in summer.  Differences in extreme standardized 
anomalies of soil moisture over the historical record range possess high values (2.5 - 3) in the 
central US where the available water capacity of the soils is high.   

An application of the model to exemplify the methodology for determining projected US 
monthly soil moisture fields under control and greenhouse gas forcing is also documented.  
Climate simulations of the coupled global climate model from the Canadian Centre for Climate 
Modeling and Analysis were used for these sensitivity examples.  The climatology of the 
control-run soil moisture fields reproduces several characteristic features of the historical soil 
moisture climatology.  Simulations with forcing by a 1% greenhouse-gas- increase scenario show 
that for at least the first few decades of the 21st Century somewhat drier-than-present soil 
conditions are projected, with highest drying trends found in the southeastern US.  The soil 
moisture deficits in most areas are of the same order of magnitude as the soil moisture field-
standard-deviations aris ing from historical natural variability.  In a companion paper (Brumbelow 
and A. Georgakakos, 2000), the monthly soil moisture fields for the historical, control and 
greenhouse-gas-increase runs are used to initialize a site-specific daily crop yield model at the 
start of the growing season.  Assessments of potential impacts of climate variability and trends 
on irrigation requirements and crop yield across the conterminous US are made.    
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INTRODUCTION 

 

The questions that motivated the present study are:   
 
(a) What are the tendencies and sensitivities of conterminous-US soil moisture over the 

historical period of record, and what are expected tendencies and sensitivities given 
climate forecasts into the next century?  

(b) What is the impact of such variability on irrigation requirements and crop yield in the 
US?   

The present paper develops a framework and models to address the first question on 
monthly scales and over the climate divisions of the conterminous US.  A companion paper 
(Brumbelow and A. Georgakakos, 2000) uses the soil moisture fields produced and appropriate 
crop yield models to address the second question. 

It is long recognized that soil moisture regulates land-surface energy and moisture 
exchanges with the atmosphere and has a key role in flood and drought genesis and maintenance 
(Walsh et al. 1985; Karl, 1986; NRC, 1991; Chen and Avissar, 1994; Georgakakos et al. 1995; 
Betts et al. 1996; Caporali et al. 1996; Huang et al. 1996; Eastman, J.L., et al. 1998; and 
others).  Soil moisture deficit plays a significant role in regulating plant transpiration and, 
consequently, constitutes a diagnostic variable for irrigation design (e.g., Dagan and Bresler, 
1988; Protopapas and A. Georgakakos, 1990).  High extremes of soil moisture are associated 
with high potential for flooding and hazardous conditions (e.g., Georgakakos and Bae, 1994).   

Although the importance of soil moisture for hydrologic science and applications cannot 
be overemphasized, there are few long-term and large-scale measurement programs for soil 
moisture that provide in-situ profile data suitable for hydroclimatic analysis and design in the US 
(e.g., Holinger and Isard, 1994; Georgakakos and Baumer, 1996) and abroad (e.g., Vinnikov and 
Yeserkepova, 1991).  Active and passive microwave data from polar orbiting satellites or 
reconnaissance airplanes do provide estimates of surface soil moisture with continuous spatial 
coverage.  They are limited in that they only measure soil moisture within the first few 
centimeters from the soil surface, and are reliable when vegetation cover is sparse or absent (e.g., 
Owe et al. 1988; Ulaby et al. 1996; Jackson and Le Vine, 1996; Owe et al. 2000).  As a 
consequence of the lack of suitable observations, most of the continental-scale studies in 
hydroclimatology, including the present study, use estimates of soil moisture produced by a 
variety of models ranging from the land-surface components of global climate models (e.g., 
Roads et al. 1994; Shao and Henderson-Sellers, 1996; Dirmeyer et al. 1999) to conceptual 
hydrologic models (e.g., Kunkel, 1990; Milly, 1994; Schaake et al. 1996; Huang et al. 1996; 
Yates, 1997).  Of these models the model formulated in Huang et al. 1996 is one that comes 
close to addressing the objectives of the present study.  Apparently it is the only one appropriate 
for climate division scales that is being used and validated in an operational environment by the 
Climate Prediction Center of NOAA (http://www.cpc.ncep.noaa.gov/soilmst/cas_text.html and 
http://www.cpc.ncep.noaa.gov/soilmst/cas_verif.html).  Our present modeling work generalizes 
further that formulation. 

Previous modeling and observational studies have shown the rich behavior of soil 
moisture variability over a range of scales (e.g., Hills and Reynolds, 1969; Rodriguez-Iturbe et 
al. 1991; Vinnikov and Yeserkepova, 1991; Georgakakos et al. 1995; Cayan and Georgakakos, 
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1995; Rodriguez-Iturbe et al. 1995; Guetter and Georgakakos, 1996; Huang et al. 1996; 
Vinnikov et al. 1996).  In the present study we revisit this problem on continental scales with new 
physically-based formulations suitable for use with climate-division and global climate model 
data, and accounting fo r snow accumulation and ablation in winter and spring. The macroscale 
hydrologic model is formulated in the next section and it is suitable for application to continental 
regions with spatial resolution of a few thousand square kilometers and temporal resolution of a 
month.  The model includes soil moisture, runoff and snow accumulation and ablation 
components.  It is forced by precipitation, temperature and potential evapotranspiration.  It 
utilizes spatial digital data of soil texture and plant cover, and when applied over the 
conterminous US for the historical period it is forced by climate division data.  No site-specific 
calibration is applied to the model results and an estimate of model effectiveness is obtained by 
comparing simulated and observed runoff production in various catchments in the US and 
simulated and observed soil moisture for Illinois. Global climate model (GCM) output is used to 
force the model for future periods, and components are formulated in section 2 for downscaling 
and uncertainty estimation in the forcing fields.  It is noted that the newly formulated macroscale 
hydrologic model offers the advantage over the land-surface components of global climate 
models that it allows considerations over scales smaller than the grid size of the GCM (order of 
105 km2).   

The output from both a control climate model run (simulating present conditions for the 
future), and a greenhouse gas increase run (1% per year increase in CO2, accounting for the 
direct forcing effects of sulfate aerosols) is used as the input to the hydrologic modeling system.  
Section 3 presents an analysis of the ensuing impacts on simulated soil moisture variability 
across the US, and section 4 contains concluding remarks.  It must be emphasized that it is 
uncertain whether present day climate models are capable of simulating reliably future climatic 
changes on regional scales in extratropical regions (e.g., Takle and Mearns, 1995; Risbey and 
Stone, 1996; Yu and Mechoso, 1999).  Furthermore, attributing the observed climate change to 
specific natural or anthropogenic forcings (greenhouse gas emissions and land-use/land-change) 
is impossible at present as it requires coupled global climate models with improved physics and 
the availability of large simulation ensembles (e.g., van Dam, 1999; Barnett et al. 2000).  As 
such, the part of the present study concerning future assessments (as all such assessment studies) 
should be considered a sensitivity analysis of soil moisture variability under a variety of 
simulated future scenarios of surface precipitation and temperature.  Nevertheless, because of the 
formulation of a component for bias adjustment of climate model surface precipitation and 
temperature from past observations (section 2), the present methodology will be valid for future 
periods when the statistical parameters of these relationships do not change substantially in the 
next few decades.  

New elements of the present study are: 
(a) Parsimonious macroscale snow pack and soil moisture models using soils and plant 

cover spatial databases and with components for statistical downscaling and bias-
adjustment of climate model data. 

(b) An integrated methodology for assessing site-specific irrigation requirements and 
crop yields in the US under a variety of climate scenarios (see also companion paper 
by Brumbelow and A. Georgakakos, 2000).   
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FORMULATION 

 
The modeling philosophy consists of the following elements: 
(a) For soil water estimation, one-dimensional considerations along the vertical are 

adequate.   
(b) Large-scale variability of relevant soil and land-cover properties are quantified 

and incorporated into the modeling procedure. 
(c) The model is verifiable at its scale of applicability with observed data of flow 

and/or soil water. 
(d) The model forcing consists of variables with historical data that conform to the 

requirements of the assessment goals set for soil water variability (e.g., monthly 
data, typical of GCM output fields). 

(e) To the extent possible the GCM forcing is adjusted for spatial-scale effects and 
for model uncertainty before it is used to force the hydrologic model. 

The approach followed in this work follows along the lines of operational soil moisture 
modeling that was used in Huang et al. 1996, which does not include soil surface energy balance 
modeling but uses the concept of potential evaporation instead.  This was done for mainly two 
reasons: (a) historical data for climate divisions are typically temperature and precipitation; (b) 
energy balance components for soil moisture modeling require radiation input from historical 
data and from GCMs and in both cases this input is much more uncertain than temperature 
(interpolation from sparse observations to climate division scales is a problem for the historical 
data, and cloud radiation processes are the problem in GCMs as Barnett et al. 2000 state).  We 
generalize the approach of Huang et al. 1996 in several respects: (a) we have added a snow 
accumulation and ablation component; (b) we did away with model components requiring 
calibration with local data and instead used process-model formulations relying on available 
spatial digital terrain and land-use land-cover data. 

 
Soil Moisture Model 

For the purposes of this work, the basic accounting unit is a climate division of the 
United States (Figure 1).  The soil moisture model assigns a characteristic soil moisture content 
in each division on the basis of its dominant soil and plant cover characteristics.  The state of the 
model is the soil moisture content θ (m3/m3)characterizing the soil column within a division 
during a certain month.  The forcing variables are the precipitation plus snowmelt rate, r 
(mm/mo), and the atmosphere’s potential rate for evaporation, e0 (mm/mo).  The latter is 
modified to reflect plant ground cover.  Water availability in the soil column then determines the 
actual evapotranspiration rate e from the soil. 
 Surface runoff, q (mm/mo), is generated as a result of soil water availability and 
difference in average rates between infiltration and precipitation over a month.  Baseflow, b 
(mm/mo), and deep groundwater leakage, g (mm/mo), are produced throughout the soil column 
to accommodate infiltration rates and large-scale catchment geometry and stream topology.   
 The equation for the conservation of soil water volume in a soil column characterizing a 
model division is: 
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where ZT (m) is the modeled soil depth, and θ(t) is the soil moisture content of the soil at time t.  
The wilting-point soil-moisture content θw is defined as the moisture that the soil retains at a –1.5 
MPa matric potential.  Moisture contents less or equal to this moisture content are not available 
for evapotranspiration.  Together with the saturation soil moisture content, θs, and the field 
capacity moisture content, θf, the wilting point defines the range of soil moisture, which is 
available for use by plants and for the generation of gravity flow in the soil.   

The total surface and subsurface runoff, Uc, is given by: 
 

   )()()( tbtqtU c +=           (2) 
 
It is presumed that within the monthly time scale of model application, the climate-division 
flows are efficiently transported to the sea or evaporate en route, and there are no downstream re-
entry points into the soil water system. 
 Equation (1) is a statement of the natural conservation of water, and to obtain estimates of 
θ(t), expressions for the various flow rates through and over the soils are needed.  In developing 
such expressions (or parameterizations) one should consider the available databases, both spatial 
digital databases and hydrometeorological databases.  The parameterizations used presume 
availability of the following databases: soils and land-use/land-cover digital databases over the 
conterminous U.S.; monthly climate division data of precipitation and temperature; limited 
monthly natural streamflow data.  The generation of surface runoff is modeled as a highly 
nonlinear function of soil moisture content: 
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For the purposes of this model and in view of its intended application throughout the 
conterminous U.S., a spatially dominant soil type is identified for each climate division and it is 
used as representative of the soils in that climate division.  Therefore, the values of the moisture 
parameters of Equation (3) are those corresponding to the dominant surface soil.   
 To define the baseflow rate, b(t), the approach of Mohseni and Stefan (1998) was 
followed.  The idea is to obtain an approximate expression of the baseflow rate in the stream 
network by using the soil water seepage velocity to define the area adjacent to the streams that 
contributes to stream baseflow.  Steady state balance between source and demand for water 
forms the underlying principle.   The resultant relationship gives baseflow as a function of the 
average catchment slope, a measure of drainage density and of hydraulic conductivity.  The 
hydraulic conductivity K is a function of the soil moisture content.  For this work we used the 
empirical formulation of Mohseni and Stefan (1998) based on Brooks and Corey (1964) and 
Brutsaert (1967).  The unsaturated hydraulic conductivity K is given as a function of the 
saturated hydraulic conductivity, Ks, and of the relative available moisture content in the soil: 
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where α is a soil dependent parameter, and K=0 for θ(t)<θf.    

Groundwater leakage, g(t), may be defined as a fraction of baseflow according to: 
 
  )()( tbtg µ=         (5) 
 

where µ is a non-negative model parameter. 
The model parameterizations pertaining to the evapotranspiration rate are discussed next.  

The actual evapotranspiration rate e is a function of the potential evapotranspiration rate ep, 
corresponding to a particular plant cover under unlimited water supply.  Several methods are 
available for the computation of potential evapotranspiration with varying data requirements.  
Constrained by the monthly resolution scale of the data and the availability of meteorological 
data from long historical databases, we used Thornthwaite’s empirical formula to compute a 
reference potential evapotranspiration (e.g., Bras, 1990, 224-225).  Earlier continental hydrologic 
modeling studies (e.g., Milly, 1994; Huang et al. 1996) have used this formula with reasonably 
good results.  In addition, temperature is a key output of global climate models and its 
simulations have reasonably good correspondence with observed data over large scales (Barnett 
et al. 2000).   

Once the reference potential evaporation e0 has been computed, the effects of crop 
canopy distribution and crop phenology are incorporated in a simple way.  The development 
follows that of Saxton et al. (1974).  A monthly coefficient 

isf (i=1,2,…12) is used to specify the 
fraction of bare soil versus plant canopy for each month for the area of interest.  The values of 

isf are plant-type dependent, and Table 1 shows the values used for grasses and agricultural 
crops (e.g., corn/wheat), and evergreen and deciduous trees.  The ability of grasses and 
corn/wheat to transpire also depends on their degree of maturation and other phenology 
influences under unlimited water supply.  So for the portion of the area that is covered by the 
canopy in the case of grasses and corn/wheat another parameter, 

ipf , is used to account for the 
aforementioned phenology influences by month.  The values of this parameter used in each case 
and for each month are also shown in Table 1.  The values assigned to the coefficients of the 
moisture stress relationships are based on Saxton et al (1974).  Digital land-use/land-cover data 
may be used in conjunction with digital climate division data to estimate the plant cover 
corresponding to the dominant soil cover for each division in terms of broad categories for the 
estimation of the coefficients 

isf and 
ipf  from Table 1. 

In this study, digital soils and land-use/land-cover spatial databases were used for model 
application over the conterminous U.S.  Specifically, the STATSGO (State Soil Geographic) 
database (NRCS, 1994, and Miller and White, 1998) and a digital land-use and land-cover 
database (Baily, 1995) were used to determine the soil class (based on soil texture), depth to 
bedrock, and type of dominant vegetation class for each climate division.  Figure 2 shows the 
generated parametric digital spatial databases used with the model.  Each climate division is 
characterized by a single value for all the parameters shown.  No attempt was made to account 
for the spatial variability of these parameters within climate divisions. 
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The large spatial inhomogeneity in soil properties for field scales (greater than a few m2) 
has been well documented (e.g., Cosby, et al. 1984; NRC, 1991).  Even for a particular soil class 
(e.g., loam), a range of values for soil moisture parameters (θs, θf, and θw) and a wider range of 
values for saturated hydraulic conductivity Ks have been measured.  Catchment scale values are 
not directly observable for use by the model, the model is a simplification of complex natural 
processes, and there is a long data interval of one month used.  Thus, for site specific studies, the 
model-appropriate estimates of parameters should be obtained on the basis of historical flow and 
soil moisture data for each climate division, through a process known as model calibration.   

However, soil moisture databases with at least ten years of data are not available in the 
conterminous United States except for the prototype one developed for the State of Illinois 
(Holinger and Isard, 1994).  The emphasis in this work is the behavior of soil water under 
assumed future forcing generated by climate models and which carries substantial uncertainty.  
Also, climate divisions do not necessarily correspond to hydrologic basins with measured 
outflow data.  For these reasons, the approach taken was to use nominal parameter values for all 
the runs made (see Table 2).  Thus, no parameter estimation was conducted and our most reliable 
results pertain to the relative changes of model output behavior when forced by various input 
scenarios.  To establish a range for expected model errors when using nominal parameters, we do 
compare the model generated monthly runoff over the historical period with observed monthly 
runoff from selected catchments embedded within or embedding climate divisions of similar 
area.  We also show an intercomparison of the model simulations with the Illinois soil moisture 
data.  These results are presented in section 2.3 after we formulate the snow-pack model 
component.  
 
Snow Model 

Within the conterminous United States snow processes are important during the winter 
and spring months in the northern States and in the major mountainous areas (e.g., Appalachian 
Mountains, Rocky Mountains, and Sierra Nevada Mountains).  There is a variety of snow 
accumulation and ablation models, each with different data requirements (e.g., Gray and Prowse, 
1993).  Thus, models utilizing the full energy balance equations require extensive and intensive 
data on a variety of meteorological variables such as net radiation, humidity, wind speed, etc.  
There are empirical index models which utilize individual meteorological variables (such as air 
temperature) to compute snow melt, which are more suitable for applications with routinely 
available data.  In this work we use an adaptation of the air-temperature-driven model by 
Anderson (1973).  The model uses air temperature to compute components of the snow cover 
energy and mass balance.  It is noted that air temperature is used as an index to energy exchange 
across the snow-air interface and not only to snow cover outflow.  The original model was 
designed for use with six-hourly data.  It included rain-on-snow melt events and snowmelt 
during interstorm periods.  For the present study, monthly data of precipitation and temperature 
are available and, for this reason, several modifications were made to the original model as 
described next. 
 The snow accumulation and ablation model is a discrete time model operating on a 
monthly basis.  It accounts for the following quantities at the beginning of month t : St, snow 
cover water equivalent; Dt, snow pack heat deficit expressed in mme or mm of energy per unit 
area (1 mme is the energy required to melt or freeze 1 mm of ice or water at 0 oC or 
approximately 8 cal cm-2); and At, an antecedent temperature index of the temperature within 
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snow (< 0 oC).  The model equations applied to month t, characterized by an average surface air 
temperature Tt and precipitation Pt, are: 

 
  txtt MPSS
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where 

txP is the adjusted snowfall in month t, Mt is the snowmelt during month t, F
tM  is the melt 

that refreezes in the snow cover, and 
i

CC 54 , are parameters.  The term involving 
txP in Equation 

(8) is for new snow and exists when Tt < 0 oC.  Parameter C4 is in the range 0.1 < C4 < 1.0, with 
the value of 1.0 reserved for situations when Tt = At.  Regarding the procedure for the solution of 
the Equations (6) – (8), it is noted that, although melt may be computed for a given month, it 
may refreeze in whole or in part in that same month if the heat deficit is less than zero. 
 Ignoring snowmelt due to rain-on-snow events, snowmelt is computed from 
 
   )( o

ttft TTMM
i

−=             (9)  
 
where o

tT  is a constant and 
ifM is a monthly varying melt factor (in mm oC-1).  The temperature 

0
tT  was estimated to be equal to -6 0C for monthly data intervals based on preliminary analysis 

using data from catchments in the northern, non-mountainous US.   
The snow model formulation used is a substantially simplified version of the Anderson 

(1973) air-temperature index model.  Main simplifications, motivated by the length of the 
monthly time step, are:  (a) there is no separate accounting for excess liquid water stored in the 
snow cover; (b) there are no time delays and attenuation in the outflow of liquid water from the 
snow cover; and (c) there are no partial snow cover contingencies, as it is assumed that the area 
either has 100 percent snow cover or it has no snow cover in a given month.  The parameters of 
the model were set to nominal values for all the runs made. 
 
Inference from Model Application to Selected Sites 
 
Streamflow Data 

Data from several sites were used to estimate the degree to which the model reproduced 
monthly flow in natural catchments.  The catchments were selected to represent different 
hydroclimatic regimes and topography across the US and were of size commensurate to that of 
nearby climate divisions. No site-specific model calibrations were performed and the model 
parameters were estimated from the spatial databases developed for the nearest climate division.  
A simple linear reservoir routing model was used to time distribute monthly runoff volumes 
produced by the model, with the single parameter of the routing model set to the inverse of the 
basin lag time.  Also, for these site-specific studies we adjusted the long-term monthly potential 
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evapotranspiration rates to close the water balance in each site, as it is known that the 
Thornthwaite's formulation does generate biases in potential rates (Milly, 1994; Huang et al. 
1996).  Information regarding the test sites is in Table 3 and the results of our simulations as 
compared to the observations are shown in Figure 3.  

In most cases, the potential evaporation adjustment resulted in up to 50 percent higher 
potential rates in winter and spring, and up to 50 percent lower potential rates in summer.  For 
the case study in Arizona, substantial reduction of potential rates was necessary throughout the 
year.  While the underestimation is expected for the Thornthwaite's formula, sensitivity 
experiments with daily data for the sites showed that the overestimation in drier regimes is 
primarily due to the long data interval that does not allow realistic representation of the effects of 
intermittent convective precipitation regimes in streamflow.  The introduction of a parameter for 
the number of rainy days in a month improves the results, but this parameter depends 
significantly on climate and it is not available for our sensitivity experiments with GCM output.  
Such a parameter was not used for this study.  Also, for the sensitivity studies with historical 
climate division data and with GCM data, all the monthly adjustment factors for potential 
evaporation were set equal to the nominal value of 1 for all the climate divisions.   

An additional note is necessary regarding the differences in spatial extent among climate 
divisions in the eastern and western US.  In the latter case, the large areas of climate divisions 
contribute to the errors of the model in regions and periods with strong convective regimes.  
Also, our neglecting the variability of soils and plant cover within each division has more 
pronounced effects for the larger divisions in the West.    

The simulated and observed monthly flow cycles in Figure 3 are in broad agreement for 
all cases and months, and the monthly differences are within the range obtained by other 
validation studies (e.g., Shao and Henderson-Sellers, 1996; Dirmeyer et al. 1999).  The cross-
correlation coefficient, ρ, between monthly observed and simulated streamflow suggests that the 
simulated flows explain at least 45% of the observed flow variance, with the lowest value 
obtained for the Arizona case study and the highest value obtained for the 3ox3o area in 
Oklahoma.  

 
Soil Moisture Data 

Data from the Illinois long-term soil-moisture-observing network were also used to 
determine the character of model errors in soil moisture.  It is noted that this area has non-
negligible snow cover in winter.  Three measurement sites in and near climate division 71 (which 
contains Salt Creek in Illinois, see Table 3 and Figure 3) provided soil water data.  Depth-
averaged soil moisture was used to produce monthly averages at each site.  The arithmetic 
average of the values at the three sites was then computed for each month to produce monthly 
soil moisture estimates for climate division 71 from observed data.  These estimates are 
compared to those generated by the model for climate division 71 in Figure 4.   

The model results are in general agreement with the observed data with excellent time 
matching of the highs and lows of soil moisture.  During the first four years of record, soil 
moisture monthly cycles are very well reproduced in amplitude and phase.  During the period 
from 1986 through 1998 although the phase of the cycle continues to be reproduced well, there is 
significant overestimation of the amplitude of the monthly cycle by the model (40-70 percent).  
The model does reproduce the variations of the cycle lows well throughout the period.  It is less 
successful in doing so for the maxima of the cycle.  Similar results were obtained for other 
divisions in Illinois (see Table 4) with a 25 - 65 % explanation of observed monthly variance. 
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In spite the noted model shortcomings, the  results obtained show non-negligible skill in 
reproducing both runoff and soil moisture in a variety of conditions.  The model's physically-
based nature allows for its use in sensitivity studies to examine the effect of various forcing 
scenarios to soil moisture simulations.  In that respect the model is commensurate with the GCM 
forcing in that it is not calibrated regionally, but that regional differences in its parameters are a 
result of using the spatial digital soils and pant-cover databases of Figure 2. 
 
Coupled Global Climate Model Forcing 

In order to extend the analysis in the future, the monthly simulations provided by a 
coupled ocean-atmosphere global climate model (CGCM) for the period 1931-2100 were 
considered to determine the input to the macroscale hydrologic model for future times.  The 
particular CGCM model used was developed at the Canadian Centre for Climate Modeling and 
Analysis with a resolution of approximately 3.750 x 3.750.  It is documented at the web site: 
www.cccma.bc.ec.gc.ca/cgi-bin/cgcm1.   

It is apparent that for the eastern United States, a grid box of this particular CGCM model 
contains several climate divisions (see Figure 1).  Direct use of the information in the CGCM 
simulations cannot be made (at least) for monthly precipitation because of (a) the disparity of 
scale between the resolution of the CGCM fields and the required input to the macroscale 
hydrologic model at climate-division scales, and (b) the considerable uncertainty in the CGCM 
simulations of precipitation and temperature.  For example, the coarser CGCM fields would 
considerably smooth highly localized extreme monthly precipitation rates.  Figure 5 shows the 
cross correlation between the GCM monthly precipitation simulations at the GCM grid-box level 
and the corresponding monthly observed precipitation computed from the observed climate 
division data corresponding to each GCM grid-box.  Maximum values are approximately equal 
to 0.4.  The CGCM explains less than 16 percent of the monthly variability of the observed 
precipitation field on the 3.750x3.750 scale.  Better precipitation simulations are shown for the 
southern Appalachians, Upper Great Plains, and the northern Pacific Coast.   

Direct comparison of CGCM simulations and aggregated climate division data for 
individual grid boxes reveals that there is very little association between the time series at those 
scales for most of the US.  Linear regression relationships of observed vs. CGCM precipitation 
data were obtained for four grid boxes randomly selected in Illinois, Oklahoma, northern 
California and Georgia.  The results show that the regressions have a positive intercept on the 
observed precipitation axis (the CGCM simulations are biased high), and the regression 
correlation coefficient ranged from less than 0.1 for Georgia to about 0.25 for the Midwestern 
grid boxes to about 0.4 for northern California. 

Given these results for the CGCM grid box scales, direct use of the CGCM precipitation 
monthly simulations as input to the nonlinear macroscale model will result in highly uncertain 
hydrologic fields due to inherent CGCM simulation errors and because of the disparity of scale 
between the CGCM grid box size and the size of the climate divisions.  The latter is particularly 
true for the eastern and central US where several climate divisions are contained in a single 
CGCM grid box.  It is, however, desirable to use the CGCM information as it is probably the 
best source of information for future years without observed data (Barnett et al., 2000).  The 
following methodology was used in an effort to reduce the noise in the CGCM information and 
to represent it reliably in the input to the macroscale hydrologic model.  It is used with each 
climate division.  Chen et al. 1998 shows that such methodologies produce useful results for 
surface precipitation. 
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 The parameters of linear regressions between aggregate climate division precipitation (or 
temperature) and CGCM simulations of precipitation (or temperature) for each month of the year 
have been estimated using the historical data for the period 1931-1998 for all the divisions and 
GCM nodes within the conterminous US.  Thus, if we denote by Pa(i,t,m) the aggregate 
precipitation (or temperature) corresponding to CGCM node i in year t and month m, and by 
Pg(i,t,m) the analogous quantity simulated by the CGCM, the regression equations are of the 
type: 
 
  ),,(),,(),,( ,0,1 mtivmtiPmtiP mgma ++= αα      (10) 
 
where α1,m and α0,m are regression parameters and v(i,t,m) is a random error.  The estimation of 
the regression parameters (they do not depend on particular nodes) is done using the historical 
climate division data, PD(j,t,m), of precipitation or temperature, and the concurrent CGCM 
simulations of these quantities over the entire conterminous US.  The climate division data are 
aggregated to the level of the CGCM grid boxes using: 
 

  ∑
=

=

=
iNj

j
D

i
a mtjP

N
mtiP

1

),,(
1

),,(        (11) 

 
where Ni is the number of climate subdivisions that are closest to the ith CGCM grid node.  This 
number is large in the eastern US while it may be as low as 1 in the West.  There is an 
association table that links each climate division number j to the corresponding CGCM grid node 
number i.   
 For precipitation, the regression correlation coefficient ranges from about 0.23 in August 
to about 0.42 in June, with most of the months having coefficient values of about 0.35.  Even 
though the values are small they are significant given the abundance of data used in their 
estimation, and they reflect the difficulties associated with downscaling a highly intermittent 
field such as precipitation.  The intercept estimates ranged from about 0.9 to about 1.5. 
 The next step involves the computation of climate division residuals for each climate 
division j associated with CGCM node i as follows: 
 

  ),,(),,(),,(
^

mtiPmtjPmtjR aDD −=       (12) 
 

where ),,(
^

mtiPa  represents the regression estimate of the aggregate climate division 
precipitation (or temperature) for node i computed using the estimated regression parameters.  

Long term averages, ),,(
^

mjR D  and standard deviations, 
^

),,( mjSD  of RD(j,t,m) may be 
computed for each climate division, for each of precipitation and temperature variables, and for 
each month of the year: 
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where T is the number of years of record.  The standardized remainder vector eD(j,t,m), with 
elements the precipitation and temperature components, may then be modeled as a vector 
autoregressive process: 
 
  )1()()1( ++⋅=+ tHteAte DD ξ       (15) 
 
with 
 

  ),(/)),(),,((),,(
^^

2,12,12,12,1
mjSmjRmtjRmtje DDDD −=    (16) 

 
where subscripts 1 and 2 denote precipitation and temperature, matrix A and matrix H are 
parameter matrices, ξ(j,t,m) is a normal random vector with zero mean and unit covariance 
matrix.  The elements of parameter matrices A and H are estimated from historical data.  
Equation (15) is applied sequentially for each month of each year of record.   
 For the determination of climate division input data for future years for division j, the 
reverse process is followed: 

(1) For each of precipitation and temperature, compute ),,(
^

mtiPa from regression (10) 
using estimated parameters, and the CGCM future simulations for node i 
corresponding to climate division j. 

(2) Estimate the future precipitation (or temperature) for the climate division, PD(j,t,m), 
as follows: 

 

),,(),(),(),,(),,( 2,12,12,12,1

^^^
mtiPmjRmjSmtjemtjP aDDDD ++=     (17) 

 
 The methodology outlined preserves the mean trends in the future GCM simulations, 
adjusts biases in the GCM predictions due to scale and other effects, and incorporates the 
variability on smaller scales.  It does assume that the historical second moment properties of 
RD(j,t,m) are preserved in the future period, and this is the primary condition for its validity when 
applied to future periods.  Thus, our analysis of future projected scenarios will be limited to the 
first few decades of the 21st Century.  
 
 

RESULTS AND DISCUSSION 
 

Three runs of the macroscale hydrologic model were made for all the climate divisions of 
the conterminous United States with valid data and using nominal parameters.  There are 344 
climate divisions of which 17 do not have valid data during the historical period and were not 
considered in the analysis (see also Huang et al. 1996).  The first run was made with data from 
the historical period 1931-1998 and using forcing from the observed climate division 
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precipitation and temperature data.  A second run was made with forcing from the CGCM1 
control run using present day greenhouse gas emissions.  The last run of the macroscale 
hydrologic model used forcing from the CGCM1 greenhouse-gas- increase run, which assumed 1 
percent increase in CO2 per year including the direct effects of sulfate aerosols.  For the last two 
runs the downscaling and bias adjustment component of the macroscale model (see section 2.4) 
was active.  In the following we present relevant results from these three runs.  More detailed 
analyses of the historical dataset are in progress and will be reported elsewhere. 
 
Historical Run 

To describe the spatial variability of soil moisture we compute the mean and standard 
deviation of the climate-division soil moisture for the model-run period and display it over the 
conterminous US climate divisions through a geographic information system.  Also obtained are 
maps of the difference between the highest and lowest deciles of soil moisture anomalies (value 
minus the corresponding long-term monthly mean) over the run period.  The latter measure is 
appropriate for characterizing the range of variability over each climate division.   
 

Figure 6 shows the mean divisional soil moisture for the historical period for January 
(upper left panel) and June (lower left panel).  The unit of soil moisture is m3/m3. There is a well-
defined trend for moist conditions for most of the eastern US and the Pacific Northwest.  As 
expected, January soil moisture is higher than June soil moisture, with the largest changes 
occurring along the West Coast and in the Southwest.  Soil moisture means span the range from 
about 0.10 to about 0.45.  The corresponding historical soil moisture standard deviations are also 
shown in Figure 6 for January (upper right panel) and June (lower right panel).  Least soil 
moisture variability is obtained for the eastern US and the Pacific Northwest in January, and for 
the California and the Southwest in June.  The winter estimates of low standard deviation denote 
consistently moist regional conditions, while the summer low standard deviations correspond to 
consistently dry regions.  Overall the standard deviation is a small fraction of the soil moisture 
mean except in the driest southwestern regions during summer. 

The range of extreme variability in soil moisture may be described by the difference 
between the upper 10th percentile and the lower 10th percentile of standardized anomalies for 
each division.  The bottom panel in Figure 6 shows the map of such differences over the 
conterminous US.  It may be seen that the central US, portions of the Southwest and Florida 
exhibit the largest differences.  This is likely the result of extreme forcing and of large available 
water capacity in the soils. 

 
Future Scenario Runs 
 The soil moisture means for the control run and for the period 1999-2060 are shown in 
Figure 7.  The results resemble substantially those in Figure 6 corresponding to the historical 
climate division forcing with the summer soil moisture being somewhat higher for the control 
run than that of the historical divisional- forcing run.  The standard deviations corresponding to 
the control run forcing are shown in right panels of Figure 7.  They resemble the historical run 
results in Figure 6 for winter but they are dissimilar to those for summer mainly in the dry 
southwestern US.  Differences in extreme  deciles in Figure 7 and may be compared to those in 
Figure 6.  The large ranges found for the central and southeastern coastal US are reproduced by 
the control scenario results.  The western US ranges are larger in the control scenario run than 
they were found for the historical divisional data in Figure 7.   These results show that comparing 
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soil moisture results pertaining to various scenarios with the control-scenario soil moisture 
results is a valid approach, as the control scenario results are qulitatively similar to those 
obtained using the historical record. 
 The soil moisture results for the GCM scenario with a 1% increase of CO2 concentrations 
per year (plus sulfate aerosol effects) are shown in Figure 8 (means in left upper panels, standard 
deviations in right upper panels and differences in extreme deciles in bottom panel). Comparison 
with the corresponding control scenario results discussed above shows that in several regions of 
the US there is a drying tendency for soil moisture, particularly in the summer and in the eastern 
US.  Also, the variability of soil moisture (as measured by the standard deviation and the 
difference in extreme deciles) is greater under the greenhouse-gas increase scenario especially in 
the eastern US in both winter and summer.   

To obtain an aggregate measure of the association of the soil moisture under the control 
and the greenhouse-gas- increase scenarios, we constructed soil moisture averages over the entire 
conterminous US for each month of the period 1999-2060 and for both cases.  Figure 9 shows 
the association.  There is a strong linear relationship between the soil moisture results 
corresponding to the two forcing scenarios, with the greenhouse-gas- increase scenario resulting 
in drying of the soils, especially during times with low soil moisture content (values of 0.27-
0.32).  To further probe the significance of these results for various regions, we studied the 
behavior of soil-moisture spatial averages for six sectors of the conterminous US.  These were 
defined based on latitude (LAT) and longitude (LON) as follow: 

 
SouthEast (SE) :         LAT < 350   900 <  LON 
MidWest (MW):        LAT > 350   900 <  LON < 1050 
SouthCentral (SC):     LAT < 350                            900 <  LON < 1050 
SouthWest (SW):       LAT < 400    1100 <  LON 
NorthWest (NW):      LAT > 400    1100 <  LON 
NorthEast (NE):         LAT > 350                LON < 900  
 
The difference of the monthly values of average soil moisture (control forcing – ramp 

forcing) was computed for each one of these sectors, and a 5-year moving average operation was 
applied to the noisy results to reveal significant trends over the study period.  Figure 10 shows 
the smoothed traces for each sector and for the period 1999-2060.  Larger positive values 
indicate drying, while values near zero indicate no significant change in soil moisture from 
control run conditions (resembling historical conditions as shown earlier).  The Figure shows that 
the Southeast and Northeast regions are expected to exhibit the largest degree of drying over the 
next half of a century.  For those regions, the drying trend is an increasing one for the last 
decades of the study period.  Comparing these results to the means and standard deviations of 
Figures 6 and 7, we find that the drying changes in soil moisture projected for the next few 
decades are of the same order of magnitude as the standard deviation due the natural variability 
and they are small fractions of the soil moisture mean.   

Figure 10 also shows evidence of low-amplitude decadal cycles associated with the time 
series of differences.  The amplitudes of these cycles are comparable to the total soil moisture 
changes over the entire time period, and they may be associated with the North Pacific decadal-
scale oscillation noted by Latif and Barnett (1996) in the results of coupled global climate model 
simulations and in observations. 
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CONCLUDING REMARKS 

 
An important question for planning sustainable agricultural production is: What are 

expected tendencies and sensitivities of soil moisture over the conterminous US given climate 
forecasts for the next century? To address this question, a macroscale hydrologic model has been 
formulated which is suitable for use over the climate divisions of the US using monthly data.  
The model includes soil moisture, runoff and snow accumulation and ablation components.  It is 
forced by precipitation, temperature and potential evapotranspiration.  It utilizes spatial digital 
data of soil texture and plant cover to determine hydrological-model parameters such as soil-
moisture field capacity, hydraulic conductivity, and plant phenology seasonal coefficients.  
Comparison of the model simulations with observations of soil water and flow for the historical 
period and for various areas of the US reveals generally good reproduction of the observations 
with minimal calibration.   

The macroscale hydrologic model and statistical methods for downscaling coupled global 
climate model (CGCM) precipitation and temperature fields were used with forcing from the 
Canadian Centre for Climate Modeling and Analysis CGCM1 to assess the impact to US soil 
moisture of a one-percent annual increase of greenhouse gas concentrations.  The experiments 
were done for both a control run, assuming present-day CO2 concentrations, and a greenhouse 
gas increase run, assuming 1% increase of CO2 concentrations per year from present conditions 
and allowing for direct effects of sulfate aerosols.  Assessments were made by studying the 
differences between the soil moisture fields produced, in terms of both tendency and variability 
for various spatial and temporal scales.  The results of this work were used to force regional 
crop-yield models to study the implications of soil moisture variability and future trends for 
irrigation requirements and agricultural production (Brumbelow and A. Georgakakos, 2000, 
companion paper). 

The following were significant findings of the soil moisture assessment study: 
(a) On the climate model grid-box scale, the precipitation fields produced by the control run of 

the coupled CGCM1 climate model have low cross-correlation coefficients with the observed 
climate division precipitation (maximum of 0.4 in a few regions of the US).  Nevertheless, 
the soil moisture fields obtained by forcing the hydrologic modeling system with climate 
model output from the control run are reasonably similar to those obtained from the same 
modeling system forced by the observed historical climate division data. 

(b) There are strong gradients of time-averaged climate-division soil moisture across the 
conterminous US, with wetter conditions in the east and northwest and drier conditions in the 
west and southwest.  The time standard deviation also exhibits strong seasonal gradients, 
with low values in the east and high values in the southwest in winter and with low values in 
the southwest and higher values in the east in summer. 

(c) The range of extreme soil moisture variability is highest in the central US and in the coastal 
southeast. 

(d) Assuming a one-percent greenhouse gas increase scenario results in a reduction of soil 
moisture content for most of the regions of the US.  Most significant changes were computed 
for the eastern US (both southeast and northeast) where drying is shown to have an 
increasing trend during the period 2025-2060.  Even so, the reduction in soil moisture values 
is expected to be less than 10 percent of the present level of soil moisture, and it is of the 
same magnitude as the standard deviation of the natural soil moisture variability.  It was also 
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found that the greenhouse gas increase scenario results in regional increases in soil moisture 
variability, with a regional enhancement of the range of extreme soil moisture values for the 
eastern US. 

Future research is focusing on a more detailed analysis of the variability of the simulated 
soil moisture fields and their association with El Niño Southern Oscillation indces and surface 
meteorological variables.  Analysis of simulated surface runoff and snow cover is also in 
progress.  An important next step in terms of the soil moisture assessments under projected 
climate scenarios is to force the macroscale hydrologic model with an ensemble of climate model 
simulations to allow for an objective estimation of input uncertainty and its effects on projected 
soil moisture variability.  Use of more than one climate model would allow an assessment of the 
dependence of the methodology proposed to particular GCMs.  
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Figure 1.  Longitude and latitude coordinates for the US climate divisions.  



 20Figure 2.  Parametric digital spatial databases used with the hydrologic model. 
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Figure 3.  Long term monthly averages of observed (solid lines) and simulated (dashed-dotted lines) streamflow 
for Verde River, AZ, Umpqua River, OR, Salt River, IL, and Broad River, SC. Left column shows the basins in a 
background of nearby climate divisions.  Period of record and the cross-correlation coefficients, ρ, of monthly 
observed and simulated anomalies are shown. 
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Figure 4.  Observed (solid line) and simulated (dashed line) monthly soil moisture for climate 
division 71 in Illinois. 
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Figure 5.  Cross-correlation between the climate division monthly precipitation field and 
the corresponding ones of the coupled climate model (CGCM1) for the historical period 
1931-1996.  The climate division data was spatially averaged to correspond to the climate 
model grid scale. 
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June
Standard Deviation

 
Figure 6. Means and standard deviations of soil moisture for the historical period and for 
January and June.  Also shown are differences in high/low deciles of standardized soil moisture 
anomalies.  Climate divisions with invalid data are shown in white. 
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Figure 7.  As in Figure 6 but for the control CGCM1 run. 
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Figure 8. As in Figure 6 but for the greenhouse gas increase CGCM1 run. 
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Figure 9.  Association of soil moisture resulting from the CGCM1 control scenario with 
that resulting from the CGCM1 greenhouse gas increase scenario.  Soil moisture is 
averaged over the coterminous US. 
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Figure 10.  Smoothed differences in soil moisture resulting from the control and the 
greenhouse gas increase scenario by sector in the US.  A 5-year smoother was applied to 
eliminate high frequency noise in the differences.  
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Table 1.  Monthly Canopy Distribution and Phenology Coefficients 

 

isf              
ipf  

 
Grass Conifers Deciduous Grass Conifers Deciduous 

JAN 0.5 0.5 0.5 0 0.5 0 

FEB 0.5 0.4 0.5 0 0.6 0 

MAR 0.5 0.3 0.5 0 0.8 0.5 

APR 0.4 0.2 0.4 0 1.0 1.0 

MAY 0.1 0.2 0.3 1.0 1.0 1.0 

JUN 0.05 0.15 0.1 1.0 1.0 1.0 

JUL 0.05 0.15 0.05 0.8 1.0 1.0 

AUG 0.1 0.15 0.05 0.6 1.0 1.0 

SEP 0.15 0.2 0.2 0.7 0.8 0.8 

OCT 0.35 0.3 0.4 0.8 0.7 0.5 

NOV 0.5 0.4 0.5 0 0.6 0 

DEC 0.65 0.5 0.5 0 0.5 0 
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Table 2.    Nominal Soil Moisture Parameter Values 

 

Soil Class θs(m3/m3) θf(m3/m3) θm(m3/m3) Ks(m/h) σKs(m/h) b 

Sand 0.34 0.09 0.015 0.058 2.79 0.038 

Loamy Sand 0.42 0.16 0.05 0.034 4.26 0.042 

Sandy Loam 0.43 0.21 0.07 0.022 4.74 0.050 

Loam 0.44 0.25 0.095 0.018 5.25 0.048 

Silty Loam 0.48 0.29 0.11 0.017 5.33 0.044 

Sandy Clay 
Loam 

0.40 0.24 0.11 0.021 6.77 0.044 

Clay Loam 0.47 0.32 0.17 0.016 8.17 0.046 

Silty Clay Loam 0.46 0.33 0.19 0.015 8.72 0.046 

Sandy Clay 0.41 0.29 0.18 0.026 10.73 0.035 

Silty Clay 0.47 0.35 0.21 0.012 10.39 0.051 

Clay 0.47 0.36 0.24 0.011 11.55 0.0472 

 
 
Note:  Values are based on means of Cosby et al. 1984.  The symbol σΚs denotes standard 
deviation of saturated hydraulic conductivity. 
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Table 3.  Characteristics of Validation Sites 

 

Basin 

Climate 

Division* 

Area 

km2 

 

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec ρ 

Arizona- Verde River 11 14,000 0.2 0.3 0.3 0.5 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.67 

Illinois- Salt Creek  71 4,700 1.5 1.5 1.5 1.3 1.0 0.8 0.7 0.8 0.9 1.0 1.1 1.2 0.77 

Oklahoma 3ox3o Region+ 239 90,000 1.5 1.5 1.5 1.3 1.0 0.8 0.8 0.8 1.0 1.3 1.4 1.5 0.82 

Oregon- Umpqua River 246 9,600 1.5 1.5 0.7 0.6 0.7 0.6 0.5 0.5 0.5 0.7 1.0 1.3 0.75 

South/North Carolina- 

Broad River 

 

266 

 

7,300 1.5 1.5 1.3 1.1 0.8 0.8 0.5 0.8 0.8 1.1 1.5 1.5 0.74 

 
* Climate division used to supply parameters to the macroscale model. 

+  Region and data as referenced in Guetter and Georgakakos (1996). 
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Table 4.  Observed and Simulated Soil Moisture Statistics for Illinois 
 
 
 
 

Division: 68 69 70 71 72 73 74 75 76 IL 

Mean Obs 0.34 0.33 0.34 0.37 0.34 0.37 034 0.36 0.36 0.34 

Mean Sim 0.40 0.41 0.38 0.38 0.39 0.38 0.38 0.38 0.39 0.38 

STD Obs 0.04 0.04 0.04 0.05 0.04 0.05 0.03 0.06 0.03 0.04 

STD Sim 0.07 0.07 0.08 0.08 0.07 0.08 0.08 0.09 0.08 0.07 

Cross Cor 0.7 0.5 0.6 0.8 0.8 0.8 0.5 0.6 0.5 0.8 

  
 


